nzilbb.vowels
A new tool for quantitative research on vocalic covariation
Te Kāhui Roro Reo | New Zealand Institute of Language, Brain and Behaviour
Te Whare Wānanga o Waitaha | University of Canterbury
nzilbb.vowels
?lobanov_2()
lobanov_2()
vowels
package.lobanov_2()
usagespeaker | vowel | F1_50 | F2_50 | speech_rate | gender | yob | word | F1_lob2 | F2_lob2 |
---|---|---|---|---|---|---|---|---|---|
IA_f_065 | THOUGHT | 514 | 868 | 4.3131 | F | 1891 | word_09539 | -0.7212895 | -1.9212428 |
IA_f_065 | FLEECE | 395 | 2716 | 4.3131 | F | 1891 | word_22664 | -1.6603467 | 1.4915434 |
IA_f_065 | KIT | 653 | 2413 | 4.3131 | F | 1891 | word_02705 | 0.3755925 | 0.9319794 |
IA_f_065 | DRESS | 612 | 2372 | 4.3131 | F | 1891 | word_23651 | 0.0520517 | 0.8562628 |
IA_f_065 | GOOSE | 445 | 2037 | 4.3131 | F | 1891 | word_06222 | -1.2657848 | 0.2376030 |
IA_f_065 | GOOSE | 443 | 2258 | 4.3131 | F | 1891 | word_06222 | -1.2815673 | 0.6457338 |
correlation_test()
correlation_test()
usagecorrelation_test()
usageCorrelation test results.
Count of significant pairwise correlations in original data at alpha = 0.05: 60
Mean significant pairwise correlations in permuted data (n = 100) at alpha = 0.05: 9.4
Min = 3, Max = 17.
Top 5 pairwise correlations in original data:
F2_FLEECE, F2_NURSE: -0.57
F1_FLEECE, F1_START: 0.57
F2_STRUT, F2_THOUGHT: -0.51
F1_LOT, F1_START: -0.49
F2_START, F2_THOUGHT: -0.48
plot_correlation_magnitudes()
plot_correlation_counts()
pca_test()
pca_test()
usagepca_test()
usagePCA Permutation and Bootstrapping Test
Iterations: 500
Significant PCs at 0.05 level: PC1, PC2, PC3, PC4, PC5.
Significant loadings at 0.1 level:
PC1: F1_FLEECE
PC1: F1_GOOSE
PC1: F1_START
PC1: F1_THOUGHT
PC1: F1_TRAP
PC1: F2_FLEECE
PC1: F2_NURSE
PC1: F2_THOUGHT
PC2: F1_NURSE
PC2: F2_DRESS
PC2: F2_KIT
PC2: F2_LOT
PC2: F2_STRUT
PC2: F2_THOUGHT
PC2: F2_TRAP
PC3: F2_FLEECE
PC3: F2_GOOSE
PC3: F2_LOT
PC4: F1_KIT
PC4: F1_LOT
PC5: F1_STRUT
PC6: F1_NURSE
PC6: F2_START
plot_variance_explained()
plot_loadings()
plot_pc_vs()
pc_flip()
pc_flip()
(cont.)pc_flip()
to make this happen.pc_flip()
usagepc_flip()
usage (cont.)mds_test()
mds_test()
usagemds_test()
usageonze_vowels(_complete)
onze_intercepts(_complete)
qb_vowels(_complete)
qb_intervals
sim_matrix
<span style="font-variant: small-caps;"></span>
’ etc.lobanov_2()
matches normalisation functions in vowels
package.PCAtest
package (Camargo 2022), good but merges data generation and plotting (c.f. Dunnington n.d.).ggplot
objects.annotate()